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The behavior of the dielectric constant � of pure fluids and binary mixtures near liquid-gas and liquid-liquid
critical points is studied within the concept of complete scaling of asymmetric fluid-fluid criticality. While
mixing of the electric field into the scaling fields plays a role, pressure mixing is crucial as the asymptotic
behavior of the coexistence-curve diameter in the �—T plane is concerned. Specifically, it is found that the
diameters, characterized by a �T−Tc�1−� singularity in the previous scaling formulation �J. V. Sengers, D.
Bedeaux, P. Mazur, and S. C. Greer, Physica A 104, 573 �1980��, gain a more dominant �T−Tc�2� term, whose
existence is shown to be supported by literature experimental data. The widely known �T−Tc�1−� singularity of
� along the critical isopleth in the one-phase region is found to provide information on the effect of electric
fields on the liquid-liquid critical temperature: from experimental data it is inferred that Tc usually decreases as
the magnitude of the electric field is enhanced. Furthermore, the behavior of mixtures along an isothermal path
of approach to criticality is also analyzed: theory explains why the observed anomalies are remarkably higher
than those associated to the usual isobaric path.
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I. INTRODUCTION

Despite the story of critical behavior of the dielectric con-
stant � of fluid systems started in 1932 �1�, substantial
progress was achieved in the 1970s after the establishment of
the modern theory of critical phenomena. All that led to the
current scaling description of � �2�, due to Sengers, Bedeaux,
Mazur, and Greer �SBMG�, which dates to 1980. Since then,
a number of experimental findings as well as newly devel-
oped conceptual issues make this topic to deserve further
attention.

For both pure fluids and mixtures in the two-phase region,
SBMG predicts that the coexistence-curve diameter �d�T�,
namely, the midpoints of the phase boundary in the �−T
plane, behaves like �3�

�d�T� �
�+�T� + �−�T�

2
= �c + E1−��t�1−� + E1�t� + ¯ ,

�1.1�

where t��T−Tc� /Tc, ��0.109 �4�, while + and − refer to
the coexisting phases. From an experimental point of view,
little attention has been paid to this subject for pure fluids,
while results for liquid-liquid phase transitions have evi-
denced that �d�T� can have a significant curvature: specifi-
cally, as noted in 1988 by Kindt et al. �5� and Tveekrem et
al. �6�, data on mixtures point toward the existence of a �t�2�

�with ��0.326 �4�� contribution, which dominates the �t�1−�

one in Eq. �1.1� since 2��1−�. From a theoretical perspec-
tive, Goulon et al. �7� encountered that the coexistence-curve
diameter of a droplet model for consolute critical phenomena

in binary mixtures displays a �t�2� contribution. Such an in-
consistency between results from the droplet model and
those steaming from scaling was originally noted in SBMG.

How could then the �t�2� singularity be accommodated
into scaling theory? In 2000, the scaling description of criti-
cal phenomena in fluids was revised by Fisher and co-
workers �8–11� in connection with the so-called Yang-Yang
anomaly. The generalization of this novel formulation,
termed complete scaling, to binary-fluid criticality is
straightforward �12–15�. In this context, it is natural to ex-
pect that the extension of SBMG within the idea of complete
scaling might eventually resolve the above-described dis-
crepancies in the two-phase region. As will be shown, this is
actually the case.

When the critical point is approached in the one-phase
region, either along the critical isochore of pure fluids or
along the critical isopleth �at constant pressure� of binary
liquid-liquid systems, SBMG predicts that

��T� = �c + Ē1−��t�1−� + Ē1�t� + ¯ . �1.2�

These �t�1−� anomalies find experimental support from mea-
surements for CO �16� and for a quite large number of binary
mixtures �see, among others, Refs. �17–30��. For the latter, it
was found �2� that

Ē1−�
m = � �	 �T̆c

�Ĕ�



p

+ �c	 �T̆c

� p̆



E�

� Am
+

1 − �
, �1.3�

where − and + apply to upper �UCP� and lower �LCP� con-
solute points, respectively, E���0E2 /2, while Am

+ ,

��T̆c /�Ĕ��p, and ��T̆c /�p̆�E� denote the critical amplitude of
the dimensionless isobaric heat capacity and the dimension-
less slopes of the critical surface in planes of constant pres-
sure and electric field. �Precise definition of these quantities
will be provided later.�
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Clearly, Eqs. �1.2� and �1.3�, which remain valid in com-

plete scaling, may provide useful information on ��T̆c /�Ĕ��p.

On thermodynamic grounds, ��T̆c /�Ĕ��p is, by analogy with

��T̆c /�p̆�E�, expected to be unrestricted in sign and magni-
tude. Experiments �31–34� and theoretical developments by
Onuki �35� revealed contradictory results �see, e.g., Ref.

�36��. Hence, indirect evaluation of ��T̆c /�Ĕ��p via � studies
may be regarded as a promising alternative. We are therefore
led to accomplish such a task, which gains importance on
recalling recent studies on the role of electric fields in phase
equilibria of solutions �36–39�.

In addition to analyses as a function of temperature, sig-
nificant experimental work along the experimentally seldom
studied isothermal path has appeared in the last years �see
Refs. �40–44��. The following equations were employed for
data treatment �45�:

�d�p� �
�+�p� + �−�p�

2
= �c + E1−��

m �p̂�1−� + E1�
m �p̂� + ¯ ,

�1.4�

��p� = �c + Ē1−��
m �p̂�1−� + E1�

m �p̂� + ¯ , �1.5�

the latter being referred to the critical isopleth in the one-
phase region. Clearly, these expressions must be revised ac-
cording to complete scaling. Furthermore, as noted origi-
nally, studies as a function of pressure exhibit remarkable
features that claim for reanalysis: the main question to be
addressed is to determine and characterize the relation be-
tween E1−��

m and E1−�
m , etc.

In the light of this background, we present here a detailed
study on the critical behavior of � from both theoretical and
experimental standpoints. Theoretically, we consider, as a
starting point, the system in the presence on an external elec-
tric field that is assumed to leave the �Ising-like� universality
class unchanged. This idea is introduced after Sec. II, where
basic concepts are reviewed. Then, in Secs. III and IV, we
derive, in the framework of complete scaling, expressions of
� that supplement Eqs. �1.1�–�1.5� above. In Sec. V, selected,
reliable experimental data, mostly appeared after 1980, are
analyzed and discussed: for the two-phase region, we con-
centrate on the predicted �t�2� terms for the �d�T� of pure
fluids and mixtures as well as on the �p̂�2� one for the �d�p�
of mixtures; for the one-phase region, attention is focused on

the behavior of ��T̆c /�Ĕ��p as inferred from the values of the
critical amplitude of the �t�1−� singularity. Section VI con-
tains a summary of results and some recommendations for
future experimental work.

II. BACKGROUND INFORMATION

Here, we will outline some basic, relevant theoretical is-
sues �46�. After introducing scaling, the idea of field mixing
in fluid-fluid �i.e., liquid-gas, liquid-liquid, and gas-gas� is
described and the concept of nonordering field is explained.
We then provide an account of the thermodynamics of fluids
and fluid mixtures under an electric field.

A. Scaling: Fundamentals

According to renormalization-group principles, near a
critical point there is a field-dependent thermodynamic po-
tential � that splits up into two pieces: background �or regu-
lar� and singular �or critical�

� = �bg + �sing, �2.1�

where �sing represents the relevant part of the problem, while
�bg is an analytic contribution that is always required. The

singular part depends on two relevant scaling fields, h̃ �or-
dering� and t̃ �thermal�, say

d�sing = m̃dh̃ + s̃dt̃ , �2.2�

where the first-order derivatives m̃ and s̃ are the scaling
�strong and weak� densities �47�. �For convenience, hereaf-
ter, the thermodynamic potential, the scaling fields, and the
scaling densities will be made dimensionless.� It is important
to point out that we have not considered irrelevant scaling
fields, which produce correction-to-scaling terms �the reader
may consult Ref. �9� for a full account of the various effects
of such scaling fields�.

Scaling asserts that asymptotically close to criticality

�sing � Q�t̃�2−�W��y� , �2.3�

where W� is the scaling function �with + and − applying to
t̃	0 and t̃�0, which define the one-phase region and coex-

istence, respectively�, y=Uh̃ / �t̃�2−�−� is the scaling variable,
and Q and U are nonuniversal, positive constants; the critical
exponents � and � take on the universal values specified in
Sec. I, which are characteristic of the universality class of the
three-dimensional Ising model. The exact functional form of
W� is not known, but only some conditions it must fulfill
�e.g., symmetry requirements, etc.�. Accordingly, for small y
values, the following expansions apply �48�:

W+ = W+0 + W+2y2 + ¯ , �2.4�

W− = W−0 + W−1�y� + W−2y2 + ¯ , �2.5�

where, by choosing appropriate values for Q and U and us-
ing the accepted values for the universal ratios between criti-
cal amplitudes, we can adopt W+0=W+2=1, W−0�1.9, and
W−1
2.4, while W−2 is positive as required by thermody-
namic convexity �49�. Expressions for W� when y is large
can be found elsewhere �48�. �They are not shown since no
use of them will be made in this work.�

The scaling densities are easily obtained from Eqs.
�2.3�–�2.5�

m̃ = 	 ��sing

� h̃



t̃

= �2QUW+2�t̃��y + ¯ for t̃ 	 0

QU�t̃���
h̃W−1 + 2W−2y + ¯� for t̃ � 0,
�

�2.6�
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s̃ = 	 ��sing

� t̃



h̃

= ��2 − ��QW+0�t̃�1−� + ¯ for t̃ 	 0

− Q�t̃�1−���2 − ��W−0 + 
h̃�W−1y + ¯� for t̃ � 0,
�

�2.7�

where 
h̃=sgn�h̃� is a signum factor. The behavior of
second-order derivatives �or susceptibilities� can be straight-
forwardly obtained �any interested reader can consult, for
instance, Refs. �50,51��.

B. Field mixing and the role of nonordering fields

For a symmetric system such as a uniaxial ferromagnet h̃
and t̃ are, to leading order, identified to physical fields:

hence, h̃�H and t̃� t and, consequently, � is the �dimen-

sionless� free energy per spin f̂ =−F /NkBTc �where kB de-
notes the Boltzmann constant�. In the case of �asymmetric�
fluid-fluid criticality, it is widely accepted that the scaling
fields are, in general, algebraic combinations of the physical
fields. This feature is termed field mixing. Since the specific
relation between scaling fields and physical fields is not
known a priori, it is a central task to accurately characterize
it; such a problem has been usually approached from experi-
ments and statistical mechanical models.

The above description is restricted to an isolated critical
point in the phase diagram. In many cases, there is an extra
field variable that merely develops a line of critical points or
lambda line. In other words, the presence of such a variable,
often referred to as a nonordering field �52�, does not change
the universality class of the phase transition. One of the most
typical examples is that of liquid-liquid demixing in binary
mixtures, where pressure is a nonordering field.

Scaling in the “presence” of nonordering fields has been
studied in SBMG as well in other contexts, including behav-
ior near critical end points �48,52�. Furthermore, the role of
pressure as a nonordering field in connection with complete
scaling for the case of liquid-liquid demixing in weakly com-
pressible binary mixtures has been characterized �15�.

C. Thermodynamics of systems under an electric field

We shall be concerned with a system in the presence of an
external electric field; since we will be dealing with isotropic
systems, only its magnitude E matters. The thermodynamics
can be written as �2�

dU = TdS − pdV + �dN + Ed�DV� , �2.8�

where D denotes the electric displacement while the remain-
ing variables have their usual meaning. The Gibbs-Duhem
equation is

− SdT + Vdp − Nd� − DVdE = 0. �2.9�

On dividing by V, one gets

dp = �SdT + �d� + DdE , �2.10�

where �S and � denote the entropy density and the number
density, respectively. In turn, D is related to E via

D = �0�E , �2.11�

where �0 and � denote the vacuum permittivity and the di-
electric constant, respectively. By combining Eqs. �2.10� and
�2.11� we get

dp = �SdT + �d� + �dE�, �2.12�

where, recall, E���0E2 /2. It is important to point out that
despite D �density� and E �field� are the basic pair of vari-
ables characterizing the electrostatic part of the problem, it
will prove very useful to consider � and E� as Eq. �2.12�
dictates. In terms of dimensionless critical deviations, we
have

dp̂ = �̂Ŝdt + �̂d�̂ + �dÊ�, �2.13�

where

p̂ � �p − pc�/�ckBTc, �̂ � �� − �c�/kBTc,

Ê� � �E� − Ec��/�ckBTc �2.14�

and

�̂Ŝ �
�S

�ckB
, �̂ �

�

�c
. �2.15�

For binary mixtures, we start from

dU = TdS − pdV + �1dN1 + �2dN2 + Ed�DV� . �2.16�

The Gibbs-Duhem equation can be expressed as

− SdT + Vdp − Nd�1 − N2d�21 − V�dE� = 0, �2.17�

where �21��2−�1. Here, it is convenient to divide by N to
get

d�1 = − sdT + vdp − x2d�21 − v�dE�, �2.18�

where s, v, and x2 denote the entropy per particle, the volume
per particle, and the mole fraction of component 2, respec-
tively. In terms of dimensionless critical deviations, Eq.
�2.18� turns into

d�̂1 = − ŝdt + v̂dp̂ − x2d�̂21 − v̂�dÊ�, �2.19�

where

�̂1 � ��1 − �1,c�/kBTc, �̂21 � ��21 − �21,c�/kBTc

�2.20�

and

ŝ �
s

kB
, v̂ �

v

vc
. �2.21�

III. THEORY FOR PURE FLUIDS

A. Formulation and general expressions

Complete scaling invokes three relevant scaling fields, h̃,
t̃, and g̃, which, to linear order, are combinations of all physi-
cal fields. For the case of pure-fluid criticality, we have
�8–11�
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h̃ � �̂ − k1t − j2p̂ , �3.1�

t̃ � t − l1�̂ − j1p̂ , �3.2�

g̃ � p̂ − l0�̂ − k0t , �3.3�

where, without loss of generality, coefficients for the first
terms in the right-hand side have been fixed to unity. By

choosing y=Uh̃ / �t̃�2−�−� as the scaling variable, we may
write

g̃ � Q�t̃�2−�W��y� , �3.4�

which replaces Eq. �2.3�. �Equations �2.6� and �2.7� change

correspondingly.� This clearly implies that g̃= g̃�h̃ , t̃� is the
singular part of the thermodynamic potential �i.e., g̃��sing�,
which in view of Eq. �3.3� can be p, �, or T: by solving such
equation for any of them, the remaining two terms in the
right-hand side serve to represent the background contribu-
tion.

Now we consider the system in the presence of an exter-
nal electric field of magnitude E. We assume that the univer-
sality class of the phase transition remains unaltered under
such conditions, i.e., E acts as a nonordering field that devel-
ops a line of critical points. Consequently �15�, the effect of
the electric field is expressed by making all nonuniversal
parameters in Eqs. �3.1�–�3.3� dependent on E, namely,

h̃ � �̂�E� − k1�E�t�E� − j2�E�p̂�E� , �3.5�

t̃ � t�E� − l1�E��̂�E� − j1�E�p̂�E� , �3.6�

g̃ � p̂�E� − l0�E��̂�E� − k0�E�t�E� . �3.7�

By expanding Eqs. �3.5�–�3.7� around a given point under
investigation on the lambda line, one finds

h̃ � �̂ − k1t − j2p̂ − q2Ê , �3.8�

t̃ � t − l1�̂ − j1p̂ − q1Ê , �3.9�

g̃ � p̂ − l0�̂ − k0t − q0Ê , �3.10�

where Ê��0�E−Ec� /�c
2/3, while

q2 = 	 �c
2/3

kBTc�0

d�c

dE
− j2

1

kBTc�0�c
1/3

dpc

dE
− k1

�c
2/3

Tc�0

dTc

dE

 ,

�3.11�

q1 = 	 �c
2/3

Tc�0

dTc

dE
− j1

1

kBTc�0�c
1/3

dpc

dE
− l1

�c
2/3

kBTc�0

d�c

dE

 ,

�3.12�

q0 = 	 1

kBTc�0�c
1/3

dpc

dE
− k0

�c
2/3

Tc�0

dTc

dE
− l0

�c
2/3

kBTc�0

d�c

dE

 .

�3.13�

Let us now define the lambda line. To this end, we impose

h̃= t̃= g̃=0 in Eqs. �3.8�–�3.10� and solve for t to get

t = 
Ê + ¯ , �3.14�

from which it follows that

dT̆c

dĔ
�

�c
2/3

�0Tc

dTc

dE
= −

Ep

Tp
, �3.15�

where

Tp = 1 − l1k1 − �j1 + j2l1�
k0 + k1l0

1 − j2l0
, �3.16�

Ep = −
�l0q2 + q0��l1j2 + j1�

1 − j2l0
− �l1q2 + q1� . �3.17�

We shall restrict our analysis to E=0, which is a special
point on the critical line. Indeed, because of obvious symme-
try upon electric field reversal, dTc /dE=0 �see Fig. 1� but
also dpc /dE=d�c /dE=0, implying that q2=q1=q0=0 �see
Eqs. �3.11�–�3.13��. Therefore, in order to express the effect
of the electric field, quadratic terms in E must be included in
the expansions of the scaling fields. We are then led to con-
sider E�, for which, as we have seen in Sec. II C, � is the
conjugated density. Accordingly,

h̃ � �̂�E�� − k1�E��t�E�� − j2�E��p̂�E�� , �3.18�

t̃ � t�E�� − l1�E���̂�E�� − j1�E��p̂�E�� , �3.19�

g̃ � p̂�E�� − l0�E���̂�E�� − k0�E��t�E�� , �3.20�

which yield

h̃ � �̂ − k1t − j2p̂ − q2�E�ˆ , �3.21�

t̃ � t − l1�̂ − j1p̂ − q1�E�ˆ , �3.22�

g̃ � p̂ − l0�̂ − k0t − q0�E�ˆ , �3.23�

where

q2� = ��c
d�c

dE�
− j2

dpc

dE�
− k1kB�c

dTc

dE�
� , �3.24�

Tc

E0

FIG. 1. Schematic representation of the liquid-gas critical line of
a pure fluid under an external electric field.
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q1� = �kB�c
dTc

dE�
− j1

dpc

dE�
− l1�c

d�c

dE�
� , �3.25�

q0� = � dpc

dE�
− k0kB�c

dTc

dE�
− l0�c

d�c

dE�
� , �3.26�

with

dT̆c

dĔ�
� kB�c

dTc

dE�
= −

Ep�

Tp�
, �3.27�

where

Ep� = −
�l0q2� + q0���l1j2 − j1�

1 − j2l0
− �l1q2� + q1�� . �3.28�

Thus, we observe that the electric-field-mixing coefficients
originate from the dependence of the critical coordinates on
E�.

To get concrete expressions for the physical densities, let
us consider the differential relation

dg̃ = m̃dh̃ + s̃dt̃ . �3.29�

By introducing Eqs. �3.21�–�3.23� into Eq. �3.29� and com-
paring to Eq. �2.13�, one obtains

�̂Ŝ =
k0 − k1m̃ + s̃

1 + j2m̃ + j1s̃
, �3.30�

�̂ =
l0 + m̃ − l1s̃

1 + j2m̃ + j1s̃
, �3.31�

� =
q0� − q2�m̃ − q1�s̃

1 + j2m̃ + j1s̃
. �3.32�

Finally, we note that the SBMG formulation is recaptured
from the present one by eliminating the pressure-mixing
terms in Eqs. �3.21�–�3.23�. As a result, g̃ serves to represent
the background part of the “proper” thermodynamic poten-
tial, which, in the absence of pressure mixing, is the pressure
�see Refs. �2,53,54��.

B. Two-phase region

In the absence of odd correction to scaling terms, this path
of approach to the critical point, to be labeled as “
,” is

defined by h̃
=0 �or, equivalently, y
=0� �9�. Since we will

be focused on the behavior at constant electric field, Ê�=0 in
Eqs. �3.21�–�3.23�. With the aid of Eqs. �3.4� and �2.5�, those
equations can be solved for t̃ to get to leading order

t̃
 � Tpt , �3.33�

where the mixing factor Tp, defined in Eq. �3.16�, is positive.
By introducing Eq. �3.33� in Eqs. �2.6� and �2.7� �for t̃

�0�, we obtain

m̃
 � � QUW−1�Tp���t��, �3.34�

s̃
 � − �2 − ��QW−0�Tp�1−��t�1−�. �3.35�

On substituting these into Eq. �3.32� and expanding the de-
nominator, we get

���T� = �c � B��t���1 + e��t�� + ¯� + E2��t�2� + E1−��t�1−�

+ E1�t� + ¯ , �3.36�

with

B� = − �q2� + �cj2�QUW−1�Tp��, �3.37�

E2� =
j2�B��2

�q2� + �cj2�
, �3.38�

E1−� = ��cj1 + q1��
A−

1 − �
�Tp�−1, �3.39�

where + and − read for liquid and vapor, respectively. Im-
plicit in the above equations is that q0�=�c, while expressions

for �� and ��S�� yield l0= �̂c�1 and k0= �̂cŜc �9�. In the
expansion �3.36�, only the first correction to scaling term
�t��+� �with ��0.52 �4�� was included. The linear contribu-
tion arises from quadratic terms in Eqs. �3.21�–�3.23�, which,
for simplicity, are not shown. However, we have decided to
explicitly include such background contribution since experi-
mental data suggest �10,11� that it must be considered for a
good thermodynamic description. In Eq. �3.39�, A− reads for
the critical amplitude of the dimensionless isochoric heat ca-

pacity per particle at constant electric field ĈV,E�
�T��S /�T�V,E� /NkB in the two-phase region, which can be
obtained using the Yang-Yang relation �55� to get �see Ref.
�51� for details�

A− = �2 − ���1 − ��QW−0�Tp�2−�. �3.40�

From Eq. �3.36�, the �−T diameter is

�d�T� = �c + E2��t�2� + E1−��t�1−� + E1�t� + ¯ , �3.41�

implying that a leading �t�2� singularity, which is absent in
SMBG since j1= j2=0, naturally emerges from the scaling
formulation developed here. Though other parameters enter
at play, the �t�2� term exists whenever pressure mixes in the
scaling fields �cf. Eqs. �3.38��. In this context, it is important
to recall that pressure mixing was introduced with a view to
accommodate the so-called Yang-Yang anomaly; that re-
sulted in other, related singularities, the most remarkable of
which being the �t�2� contribution to the �−T coexistence-
curve diameter �8,9�. Therefore, the search of the �t�2� term
for available experimental �d�T� data has important implica-
tions. That point will be examined in Sec. V.

C. Critical isochore in the one-phase region

To specify this path, hereafter to be labeled as “ci,” one
must start from Eq. �3.31�. By introducing the results �2.6�
and �2.7� �for t̃	0� and using Eq. �2.4�—y is small along
this path—one gets �see Ref. �9� for more details�

y = Y1�t̃�1−�−�, �3.42�

where
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Y1 =
�2 − ���l1 + j1�W+0

2�1 − j2�W+2U
. �3.43�

As before, Eqs. �3.8�–�3.10� �with Ê�=0� can be solved
for t̃ with the aid of Eq. �3.4� and, in this case, Eq. �2.4�; an
identical result to that of Sec. III B is encountered, namely,

t̃ci � Tpt . �3.44�

The scaling densities are simply obtained by introducing
Eqs. �3.42� and �3.44� in Eqs. �2.6� and �2.7� �for t̃	0�

m̃ci �
l1 + j1

1 − j2

A+

1 − �
�Tp�−1�t�1−�, �3.45�

s̃ci �
A+

1 − �
�Tp�−1�t�1−�, �3.46�

where

A+ = �2 − ���1 − ��QW+0�Tp�2−� �3.47�

is the critical amplitude of ĈV,E� in the one-phase region. By
substituting Eqs. �3.45� and �3.46� in Eq. �3.32� and expand-
ing the denominator, we get Eq. �1.2�, i.e.,

�ci�T� = �c + Ē1−��t�1−� + Ē1�t� + ¯ , �3.48�

where

Ē1−� = −
dT̆c

dĔ�

A+

1 − �
. �3.49�

The �t�1−� singularity was first advanced by Mistura �56�
by applying the Fisher-Griffiths smoothness postulate
�47,57,58� and, as noted in Sec. I, later obtained in SBMG
algebraically. Indeed, the result �3.49� can be readily ob-
tained via the exact thermodynamic relation

ĈV,E� = ĈV,� +
T

NkB
	 �S

��



T,V
	 ��

�T



V,E�
, �3.50�

where ĈV,��T��S /�T�V,� /NkB. Hence, taking into account
�i� that ���S /���T,�=−��E� /�T��,� �as follows from basic

thermodynamics� and �ii� that at criticality Ĉ�,V is finite while
��E� /�T�V,�= �dTc /dE��−1, we find

dT̆c

dĔ�
= − Tc

���/�T�E�,V

ĈE�,V

. �3.51�

This equation is valid asymptotically close to the critical
point and combined with Eq. �3.48� yields Eq. �3.49�.

IV. THEORY FOR BINARY MIXTURES

Here, in addition to the liquid-gas phase transition, the
possibility of liquid-liquid phase separation or demixing ex-
ists. In the former case, a second chemical potential acts—in
addition to E�—as a nonordering field, while, as pointed out
in Sec. II B, it is the pressure what plays such a role for the

liquid-liquid phase transition. We shall focus our attention on
the liquid-liquid case, for which there is a great number of
accurate experimental studies in the literature. Many details
of the derivation below will be omitted since it is analogous
to that of Sec. III in many respects.

A. Formulation and general expressions

According to the so-called principle of isomorphism �50�,
different phase transitions are thermodynamically equivalent
in the critical region once proper analogies between variables
are established. For the liquid-gas↔ liquid-liquid case, we
have p↔−�1, T↔T, and �↔�21. �Note also the equiva-
lence between Eqs. �2.12� and �2.18� when the vdp term is
neglected.� Thus we may write

h̃ � �̂21�p,E�� − k1
m�p,E��t�p,E�� − j2

m�p,E���− �̂1�p,E��� ,

�4.1�

t̃ � t�p,E�� − l1
m�p,E���̂21�p,E�� − j1

m�p,E���− �̂1�p,E��� ,

�4.2�

g̃ � − �̂1�p,E�� − k0
m�p,E��t�p,E�� − l0

m�p,E���̂21�p,E�� .

�4.3�

Implicit is that the formulation is restricted to the E=0 case,
where, recall, linear terms in E vanish. Hence,

h̃ � �̂21 − k1
mt − j2

m�− �̂1� − i2
m�− p̂� − q2�

mÊ�, �4.4�

t̃ � t − l1
m�̂21 − j1

m�− �̂1� − i1
m�− p̂� − q1�

mÊ�, �4.5�

g̃ � − �̂1 − k0
mt − l0

m�̂21 − i0
m�− p̂� − q0�

mÊ� + ¯ . �4.6�

The p and E� mixing coefficients read

i2
m = − � j2

m�c	 ��1,c

�p 

E�

+ �c	 ��21,c

�p 

E�

− k1
mkB�c	 �Tc

�p 

E�
� ,

�4.7�

i1
m = − � j1

m�c	 ��1,c

�p 

E�

− l1
m�c	 ��21,c

�p 

E�

+ kB�c	 �Tc

�p 

E�
� ,

�4.8�

i0
m = − �− �c	 ��1,c

�p 

E�

− l0
m�c	 ��21,c

�p 

E�

− k0
mkB�c	 �Tc

�p 

E�
� ,

�4.9�

q2�
m = − �− j2

m�c	 ��1,c

�E�



p

+ �c	 ��21,c

�E�



p

+ k1
mkB�c	 �Tc

�E�



p
� ,

�4.10�

q1�
m = − �− j1

m�c	 ��1,c

�E�



p

+ l1
m�c	 ��21,c

�E�



p

− kB�c	 �Tc

�E�



p
� ,

�4.11�
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q0�
m = − ��c	 ��1,c

�E�



p

+ l0
m�c	 ��21,c

�E�



p

+ k0
mkB�c	 �Tc

�E�



p
� ,

�4.12�

where derivatives are made dimensionless as in the pure-
fluid case �see Eqs. �3.27� and �3.28��. As before �see also
Ref. �15��, we see that pressure mixing and electric field
mixing terms in the scaling fields originate from the pressure
and electric field dependence of critical coordinates.

The Tc=Tc�p ,E�� lambda surface is characterized by

t = 
pp̂ + 
E�Ê� + ¯ , �4.13�

from which

	 �T̆c

� p̆



E

� kB�c	 �Tc

�p



E

= −
Pm

Tm
, �4.14�

	 �T̆c

�E�˘



p

� kB�c	 �Tc

�E�



p

= −
Em�

Tm
, �4.15�

where

Pm = l1
mi2

m + i1
m + �j1

m + j2
ml1

m�
l0
mi2

m + i0
m

1 − j2
ml0

m , �4.16�

Tm = 1 − l1
mk1

m − �j1
m + j2

ml1
m�

k0
m + k1

ml0
m

1 − j2
ml0

m , �4.17�

Em� = −
�l0

mq2�
m + q0�

m��l1
mj2

m + j1
m�

1 − j2
ml0

m − �l1
mq2�

m + q1�
m� .

�4.18�

Now, by introducing Eqs. �4.4�–�4.6� into Eq. �3.29� and
comparing to Eq. �2.19�, we get for the physical densities

ŝ =
k0

m − k1
mm̃ + s̃

1 + j2
mm̃ + j1s̃

, �4.19�

v̂ =
i0
m − i2

m�1,m − i1
m�2,m

1 + j2
m�1,m + j1

m�2,m

, �4.20�

x2 =
l0
m + m̃ − l1

ms̃

1 + j2
mm̃ + j1

ms̃
, �4.21�

� =
q0�

m − q2�
mm̃ − q1�

ms̃

1 − i2
mm̃ − i1

ms̃
. �4.22�

B. Two-phase region

As before, h̃
=y
=0; however, since there is an extra
thermodynamic degree of freedom we have, instead of a
critical line, a two-dimensional surface of critical points.
Therefore, in addition to E=0, another field must be speci-
fied. The most natural choice is to consider a path of ap-

proach to the critical point in which p remains constant �i.e.,
p̂=0 in Eqs. �4.4�–�4.6��. We are thus faced with exactly the
same mathematical problem as that of Sec. III, namely, to
solve the expansions for the three scaling fields as a function
of three physical fields. As a result, we find for t̃,

t̃
 � Tmt , �4.23�

where the mixing factor Tm, given by Eq. �4.17�, is positive
for UCPs and negative for LCPs.

The scaling densities are obtained by introducing Eq.
�4.23� into Eqs. �2.6� and �2.7�

m̃
 � � QUW−1�Tm���t��, �4.24�

s̃
 � − �2 − ��QW−0�Tm�1−��t�1−�. �4.25�

These enter into Eq. �4.22� to give

���T� = �c � B�
m�t���1 + e�

m�t�� + ¯� + E2�
m �t�2� + E1−�

m �t�1−�

+ E1
m�t� + ¯ , �4.26�

where

B�
m = ��ci2

m − q2�
m�QUW−1�Tm��, �4.27�

E�
m =

i2
m�B�

m�2

�ci2
m − q2�

m , �4.28�

E1−�
m = �q1�

m − �ci1
m�

Am
−

1 − �
�Tm�−1, �4.29�

in which it is implicit that q0�
m=�c while expressions for the

remaining densities imply that i0
m= v̂c�1, k0

m= ŝc, and l0
m

=x2,c �15�. Again, + and − apply to the coexisting phases of
different composition. In Eq. �4.29�, Am

− represents the criti-
cal amplitude of the dimensionless isobaric heat capacity per

particle at constant x2 and electric field Ĉp,x2,E�
�T��S /�T�p,x2,E� /NkB in the two-phase region. By using the
analogue of the Yang-Yang relation for a binary mixture, one
gets �see Ref. �51��

Am
− = �2 − ���1 − ��QW−0�Tm�2−�. �4.30�

The diameter of the �−T coexistence curve follows from
Eq. �4.26�

�d�T� = �c + E2�
m �t�2� + E1−�

m �t�1−� + E1
m�t� + ¯ . �4.31�

Again, this equation differs from that in SBMG �Eq. �1.1�� in
that a �t�2� term dominating the anticipated �t�1−� one is
present. Such novel singularity depends on p and E� mixing

into h̃ �see Eq. �4.28��, as it is the case of pure-fluid critical-
ity �cf. Eq. �3.36� and related information�. But, remarkably,
pressure acts here as a nonordering field, meaning that, in
contrast to the pure-fluid case, a nonvanishing �t�2� contribu-
tion to �d�T� does not imply the existence of the analogue of
the Yang-Yang anomaly and related singularities in liquid-
liquid criticality �see Refs. �13–15� for more details�.

An alternative path of interest is defined by constant T.
Equations �4.4�–�4.6� now give
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h̃
� � Pmp̂ , �4.32�

where Pm is given by Eq. �4.16�. For a LCP, Pm has the same
sign as ��Tc /�p�E�, whereas the opposite is true for a UCP
�see Eq. �4.14��. Accordingly, one can easily anticipate that
the expressions for m̃
�, s̃
�, and ��p� differ from their coun-
terparts along the above-studied path of constant p and E� by

powers of the factor �Pm /Tm�, which identifies to ���T̆c /�p̆�E��
�see Eq. �4.14��. Accordingly, we obtain

���p� = �c � B��
m �p̂���1 + e��

m � + E2��
m �p̂�2� + E1−��

m �p̂�1−�

+ E1�
m �p̂� + ¯ , �4.33�

where

B��
m = B�

m�	 �T̆c

� p̆



E�

��

, �4.34�

E2��
m = E2�

m �	 �T̆c

� p̆



E�

�2�

, �4.35�

E1−��
m = E1−�

m �	 �T̆c

� p̆



E�

�1−�

, �4.36�

which indicate that the amplitudes change in magnitude but
not in sign.

C. Critical isopleth in the one-phase region

By analogy with Sec. III C, this path, to be labeled as
“ci,” is defined from Eq. �4.21�. Using the same procedure
that led to Eq. �3.42�, one finds

y = Y1,m�t̃�1−�−�, �4.37�

where

Y1,m =
�2 − ���l1

m + j1
mx2,c�W+0

0

2�1 − j2
mx2,c�W+2

0 U
. �4.38�

We now proceed to solve Eqs. �4.4�–�4.6� for t̃ with the
aid of Eq. �3.4�; for a path of constant p, we obtain

t̃ci � Tmt . �4.39�

Expressions for the scaling densities follow by combining
Eqs. �4.37� and �4.39� with Eqs. �2.6� and �2.7�:

m̃ci � Q�2 − ��
l1
m + j1

mx2,c

1 − j2
mx2,c

W+0�Tm�1−��t�1−� �4.40�

and

s̃ci �
Am

+

1 − �
�Tm�−1�t�1−�, �4.41�

where

Am
+ = �2 − ���1 − ��QW+0

0 �Tm�2−� �4.42�

is the critical amplitude of Ĉp,x2,E� in the one-phase region.

By substituting Eqs. �4.40� and �4.41� into Eq. �4.22�, we
get

�ic�T� = �c + Ē1−�
m �t�1−� + Ē1

m�t� + ¯ , �4.43�

with

Ē1−�
m = � �	 �T̆c

�Ĕ�



p

+ �c	 �T̆c

� p̆



E�

� Am
+

1 − �
, �4.44�

where − and + apply to UCPs and LCPs, respectively. �Re-
call that Tm is positive for a UCP and negative for a LCP.�
Equation �4.44� is no more than Eq. �1.3�. To fully under-
stand its origin, it will be helpful to obtain �̂ci�T�
= �v̂ci�T��−1 and ��̂−1��ci�T�. From Eq. �4.20� we find

�̂ci�T� = 1 + D̄1−�
m �t�1−� + D̄1

m�t� + ¯ , �4.45�

which, combined with Eq. �4.43�, yields

��̂−1��ic�T� = �c + C̄1−�
m �t�1−� + C̄1

m�t� + ¯ , �4.46�

with

D̄1−�
m = � 	 �T̆c

� p̆



E�

Am
+

1 − �
, �4.47�

C̄1−�
m = � 	 �T̆c

�Ĕ�



E�

Am
+

1 − �
, �4.48�

where, again, − and + apply to UCPs and LCPs. We encoun-
ter that, as advanced previously �2�, the critical amplitude of
the �t�1−� singularity splits up into a, say, intrinsic contribu-

tion, C̄1−�
m , and a second one arising from the density

Ē1−�
m = C̄1−�

m + �cD̄1−�
m . �4.49�

As done in Sec. III C, a consistency proof of the results
obtained for the �t�1−� contribution comes from basic thermo-
dynamics combined with Fisher-Griffiths smoothness postu-
late. First, we shall consider the so-called Mayer’s general-
ized equation, conveniently written as

Ĉp,x2,E� = ĈV,x2,E� −
T

�2kB
	 �p

�T



V,x2,E�
	 ��

�T



p,x2,E�
,

�4.50�

where ĈV,x2,E��T��S /�T�V,x2,E�. At the critical point, ĈV,x2,E�
is finite whereas ��p /�T�V,x2,E�= ���Tc /�p�E��

−1. Thus, in the
immediate neighborhood of the critical point, Eq. �4.50�
turns into

	 �T̆c

� p̆



E�

= − Tc

�� �̂/�T�p,x2,E�

Ĉp,x2,E�

, �4.51�

which combines with Eq. �4.45� to yield Eq. �4.47�. For the
intrinsic contribution, we start from
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Ĉp,x2,E� = Ĉp,x2,�−1� +
T

NkB
	 �S

���−1��
p,x2,T
	 ���−1��

�T



p,x2,E�
,

�4.52�

where Ĉp,x2,�−1��T��S /�T�p,x2,�−1�. By noting that
��S /���−1���p,x2,T /N=−��E� /�T�p,x2,�−1� and that at criticality

Ĉp,x2,�−1� remains finite while ��E� /�T�p,x2,�−1�

= ���Tc /�E��p�−1, we obtain

	 �T̆c

�Ĕ�



p

= − Tc

����̂��/�T�p,x2,E�

Ĉp,x2,E�

, �4.53�

which combined with Eq. �4.46� gives Eq. �4.48�.
Let us finally consider a path of constant T and E�, for

which Eqs. �4.4�–�4.6� yield

h̃ci* � Pmp̂ . �4.54�

Hence we get

�ci�p� = �c + Ē1−��
m �p̂�1−� + Ē1�

m �p̂� + ¯ , �4.55�

where

Ē1−��
m = Ē1−�

m �	 �T̆c

� p̆



E�

�1−�

. �4.56�

Again, we observe that the critical amplitudes change in
magnitude but not in sign.

V. EXPERIMENTAL TESTING

A. Pure fluids

The work by Pestak and Chan for CO in 1981 �16� is, as
far as we know, the only experimental study supporting the
�t�1−� singularity in the one-phase region for pure fluids.
Since then, no significant novel results have been obtained.
Nonetheless, reanalysis of accurate literature � data for four
fluids, namely, sulfur hexafluoride �SF6� �59�, nitrogen �N2�,
neon �Ne�, and deuterated hydrogen �HD� �60�, for the more
interesting—in the actual context—two-phase region is in
order. Originally, those data were converted to densities with
a view to analyze the behavior of the �−T coexistence-curve
diameter at near criticality �see also Refs. �61–63��. In Wein-
er’s study for SF6, which was regarded as the first experi-
mental evidence for a departure from the law of the rectilin-
ear diameter, � was converted to � by means of a separate
experiment, which, as far as we are aware, was never pub-
lished. On the other hand, Clausius-Mossotti equation was
employed by Pestak and Chan. Since manipulation of data
can lead to spurious effects, it is advisable to analyze �d�T�
directly, all the more so because there is a theoretical expres-
sion for it �Eq. �3.41�� derived from the actual scaling for-
mulation.

Original � data were fitted using five different approaches
in which no more than two terms in Eq. �3.41� are considered
simultaneously; we proceeded in this way since our aim is to
elucidate whether or not a �t�2� term is necessary to describe

the data. For the same reason, correction-to-scaling terms,
which are unimportant as asymptotic behavior is concerned,
were ignored. Hence,

�d
I �T� = �c + E2��t�2� + E1−��t�1−�, �5.1�

�d
II�T� = �c + E2��t�2�, �5.2�

�d
III�T� = �c + E1−��t�1−�, �5.3�

�d
IV�T� = �c + E2��t�2� + E1�t� , �5.4�

�d
V�T� = �c + E1−��t�1−� + E1�t� . �5.5�

The results for the fitting coefficients are shown in Table I.
Figure 2 illustrates the performance of I–III for SF6, N2, Ne,
and HD. Fits IV and V provide essentially the same descrip-
tion as fit I. The observed, small deviation from linearity for
N2 can be accounted for without including the �t�2� term �i.e.,
using III or V�. Fit I provides an equally satisfactory descrip-
tion; however, fit II, in which a �t�2� alone is considered, is
poor, significantly poorer than �its �t�1−� counterpart� fit III.
Similar behavior is encountered for SF6; nevertheless, the
�t�2� singularity carries much more weight since �d�T� exhib-
its a substantially larger curvature close to criticality. �Note

TABLE I. Fitting coefficients of Eqs. �5.1�–�5.5� and standard
deviations 
 for the studied pure fluids; �c was taken as a fixed
parameter.

�c 100E2� 10E1−� 10E1 108


SF6

1.2603 6.40 2.352 6

1.2603 15.32 35

1.2603 4.028 21

1.2603 8.77 2.706 5

1.2603 7.000 −8.525 7

N2

1.1553 1.08 1.101 0.001

1.1553 4.57 3

1.1553 1.416 0.3

1.1553 2.11 1.289 0.009

1.1553 2.212 −1.320 0.01

Ne

1.0725 0.003 0.413 0.001

1.0725 1.44 0.8

1.0725 0.405 0.001

1.0725 0.39 0.478 0.003

1.0725 0.382 0.035 0.001

HD

1.1026 0.41 0.431 0.001

1.1026 1.57 0.08

1.1026 0.592 0.01

1.1026 0.74 0.581 0.02

1.1026 0.967 −0.688 0.003
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also that data for SF6 lack the precision of those for the
remaining fluids.� Values for effective critical exponents de-
rived from log-log plots �Fig. 3� corroborate all these con-
clusions.

Therefore, despite experimental observations seem to in-
dicate that the claimed �t�2� contribution to �d�T� exists, evi-
dence is not strong. Similar behavior has already been noted
for �d�T� �9,10,65�. Conversely, experimental CV data in the
two-phase region �66� point toward the existence of the

Yang-Yang anomaly and so for pressure mixing into h̃ �see
discussion below Eq. �3.41��. On the basis that there exists
additional reasons supporting pressure mixing �67�, it is a
possibility that the �t�1−� and linear terms in Eq. �3.41� nu-
merically mask the �t�2� contribution.

B. Mixtures

Significant progress has been achieved in the 1980s as
regards the experimental determination of � in the liquid-
liquid critical region. One major advance has been the char-
acterization of the Maxwell-Wagner effect, a low-frequency

dispersion phenomenon occurring in heterogeneous media
�like a system in the fluctuation-dominated critical region�
because of the presence of ionic impurities. Specific work
�see Refs. �17,18,30,68�� had to be done for mixtures with a
view to overcome the difficulties arising from such effect.

We shall begin by discussing the situation for the two-
phase region. Attention will be focused on the accurate �d�T�
data by Kindt et al. �5� for benzonitrile-isooctane �BN-IO�
and nitroethane-cyclohexane �NE-CH� and by Malik et al.
�44� for nitrobenzene-dodecane �NB-C12�. They have been
fitted using approaches I–V above �with Ei being replaced by
Ei

m�. The resulting values for the fitting coefficients are
shown in Table II, whereas the quality of fits I–III is graphi-
cally displayed in Fig. 4. As it can be observed, approaches I,
IV, and V provide a good description for the three systems;
however, the high values for the amplitudes in V may be a
reflection of a large correlation between parameters. One is
therefore led to conclude that the above data indeed support
the existence of the �t�2� anomaly for liquid-liquid criticality.
In fact, the best fits for NE-CH and NB-C12 using a singular
term alone are, in accord with the original analyses �5,6�,
those in which a �t�2� term is considered. The results for
BN-IO suggest a smaller �t�2� anomaly. Figure 5 shows log-
log plots: values for effective critical exponents are consis-
tent with the above conclusions.

0.000

0.010

0.020
∆ε

d

0 0.01 0.02
0.0000

0.0008

0.0016

∆ε
d

0 0.0020.0040.006

0 0.01 0.02 0.03

0.000

0.002

0.004

0.0000

0.0003

0.0006

0 0.008 0.016

SF6 N2

Ne HD

t t

FIG. 2. Reduced coexistence-curve diameter ��d��d−�c as a
function of the temperature critical deviation �t� for all studied pure
fluids �see text�. Points are experimental data; lines are the calcu-
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TABLE II. Fitting coefficients of Eqs. �5.1�–�5.5� and standard
deviations 
 for the studied binary mixtures; �c was taken as a fixed
parameter.

�c E2�
m E1−�

m E1
m 103


BN-IO

9.1036 6.697 15.482 0.19

9.1036 13.268 3

9.1036 30.948 3

9.1036 8.538 16.445 0.19

9.1036 70.545 −57.923 0.3

NE-CH

9.1866 13.457 24.170 0.006

9.1866 19.208 0.1

9.1866 78.887 0.6

9.1866 15.052 33.521 0.008

9.1866 228.249 −283.185 0.002

NB-C12

15.6948 25.715 −9.589 1.0

15.6948 22.129 1.5

15.6948 56.639 27

15.6948 24.775 −11.055 1.0

15.6948 243.086 −287.510 1.6

18.1963a 2.189a −0.769 a 5

18.1963a 1.266a 27

18.1963a 1.014a 125

18.1963a 1.965a −0.518a 4

18.1963a 5.832a −4.355a 1.4

aThese values are referred to data as a function of pressure and,
therefore, correspond to Ei�

m �see text�.
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Even stronger evidence in favor of the �p̂�2� singularity
comes from the �d�p� study by Malik et al. for NB-C12 �44�.
These data exhibit an unusually curved diameter �see Fig. 4�
whose description necessarily requires a �p̂�2� term: only ap-
proaches I, IV, and V work well whereas II and III are quite
poor. To understand why �d�p� displays a higher curvature

than �d�T�, one must first note that ���T̆c /�p̆�E���1 for this
system �see Table III�. Accordingly, in going from �d�T� to
�d�p�, the amplitude of the contribution with exponent by 2�
decreases to a lesser extent than those of the remaining,
higher-order terms �see Eqs. �4.35� and �4.36�� since

���T̆c /�p̆�E��
2�	 ���T̆c /�p̆�E��

1−�	 ���T̆c /�p̆�E��. Such an en-
hanced visibility of the leading term for studies along the
isothermal path has been noticed previously �40–44� and
seems to be a general feature near ordinary liquid-liquid

critical points. This may not be surprising since ���T̆c /�p̆�E��

values are typically lesser than unity �see Table III�.
The majority of studies carried out along the critical isop-

leth in the one-phase region have unambiguously evidenced
the existence of the �t�1−� and �p̂�1−� singularities, which, as
advanced in Sec. I, is a widely observed result. A deeper
discussion of such a large amount of data entails looking at
Eqs. �4.43� and �4.55�. For that purpose, Table III contains
values of all relevant parameters in those equations for some
selected, representative systems. Critical coordinates �c, Tc,

pc, and �c as well as ��T̆c /�Ĕ��p and ��T̆c /�p̆�E� values are

also displayed. Whenever possible, ��T̆c /�Ĕ��p has been cal-

culated from Am
+ , �c��T̆c /�p̆�E�, and Ē1−�

m �or Ē1−��
m � via Eq.

�4.44�. The results cannot be taken literally since Ē1−�
m and

Ē1−��
m are subjected to a significantly large uncertainty inher-

ent to separating terms with exponents closely spaced nu-
merically �see, e.g., Ref. �84��; however, as we will explain
below, they provide significant insights in a number of re-
spects.

Our first remark is that the magnitude of the �t�1−� singu-
larity of � is, in general, significantly greater than that of �:
one can verify that the anomalies are clearly visible in � vs T
plots �see the original papers as well as Fig. 6 for illustra-
tion�. This is generally not the case for � vs T representations
�see, e.g., Refs. �82,84,85� as well as literature data shown in

Fig. 6�, implying that ��T̆c /�Ĕ��p is, typically, a large number

as compared to �c��T̆c /�p̆�E�. Table III shows this fact,
whose reliability can be checked by examining the results for
nitrobenzene-isooctane �NB-IO� and A-CH, to the best of our
knowledge the only systems for which experimental values

of ��T̆c /�Ĕ��p and ��T̆c /�p̆�E� are available. Hence, by calcu-

lating the ��T̆c /�Ĕ��p of NB-IO through Eq. �4.44�, one gets
consistency, in terms of order of magnitude, with the experi-
mental values directly obtained independently by Debye and
Kleboth �31� and Orzechowski �34� �see Table III�. On the

other hand, the experimental value of ��T̆c /�Ĕ��p for A-CH
should lead to a very large anomaly in � which is not ob-

served �in fact, Ē1−�
m vanishes within experimental uncer-

tainty� �23�. We are inclined to think that typical values of

��T̆c /�Ĕ��p are large, but not so large.
Second, for the same system, the anomaly in ��p� is stron-

ger than that in ��T�. As argued above, the singular contri-
bution gains weight with respect to the linear one since 1

	 ���T̆c /�p̆�E��
1−�	 ���T̆c /�p̆�E�� and, consequently, the �p̂�1−�

term is decreased to a lesser extent.

Finally, the calculated ��T̆c /�Ĕ��p values are found to be
negative in most of the studied cases. This is a consequence

of the positive values for Ē1−�
m or Ē1−��

m �i.e., � curving down-
wards in a �d vs �t� �or �p̂�� plot as the critical point is ap-
proached� and the negative ones �i.e., � bending upwards�
are observed for UCPs and LCPs, respectively. Exceptions
are A-CH, which, recall, shows an almost undetectable
anomaly, and nitrobenzene-hexane �NB-C6� along the iso-
thermal path which, despite being of the UCP-type, exhibits

a negative Ē1−��
m value. The behavior of NB-C6 cannot be

explained unless ��T̆c /�Ĕ��p changes from negative to posi-
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tive values �see Table III� in going from �Tc=292.65 K, pc
=0.1 MPa� to �Tc=288.55 K, pc=28.9 MPa�. Specific mea-

surements for this system with a view to obtain ��T̆c /�Ĕ��p,
��p�, and ��T� for those two points in the critical surface
should shed light on this issue.

VI. SUMMARY AND OUTLOOK

The thermodynamics of the dielectric constant � of fluids
and fluid mixtures near fluid-fluid critical points has been
updated. To this end, the traditionally accepted scaling for-
mulation of near-critical fluid systems under an electric field
has been extended according to the concept of complete scal-
ing. While behavior in both the one-phase and two-phase
regions is investigated, our main result is that coexistence-
curve diameters in the �−T and �− p planes gain a leading
�Y�2� �with Y = t or p̂� term. Pressure mixing and electric field
mixing into the ordering field determine the strength of those

TABLE III. Critical coordinates, �c �m−3�, Tc �K�, pc �MPa�, and �c, slopes of the critical surface, and critical amplitudes involved in
Eqs. �4.44� and �4.56�.

Systema 10−27�c Tc pc �c ��T̆c /�Ĕ��p
b �c��T̆c /�p̆�E� Ē1−�

m Ē1−��
m Am

+

NB-C12 4.009e 302.65f 0.1f 15.60f −0.96 0.0062f 2.54f 2.35g

4.007e 303.14f 43.65f 18.23f −0.35 0.015f 0.96f 2.35c

NB-C6 5.132e 292.65h 0.1h 10.88f −1.29 −0.139h 2.18e 1.69i

5.156e 288.55h 28.9h 10.70h +0.50 −0.074h −1.09h 1.69c

NP-C16 3.725j 308.10j 0.1j 9.19j −1.87 0.057k 7.26j 3.36d

3.671j 322.15l 117.5l 9.45l −0.10 0.0581l 0.60l 3.36d,c

NE-3MP 5.922m 299.69n 0.1n 9.73n −3.40 0.029o 11.4n 2.96p

TEA-W 23.013q 291.40r 0.1r 53.24r −8.14 3.55s −237r 45.9t

NB-IO 4.508u 302.21v 0.1v 10.28v −3.22 −0.081u 6.43v 1.83u

�−7.74�w

�−9.10�x

BN-IO 4.350y 291.69z 0.1z 9.14z −0.065y 9.14z

A-CH 5.905s 286.39aa 0.1aa 3.71aa �0 0.021s �0aa 3.30ac

�−16391�ab

NE-CH 6.496ad 296.62ae 0.1ae 9.15ae −4.70 0.12af 13.9af 2.56ad

aAbbreviated nomenclature: nitrobenzene-dodecane �NB-C12�,
nitrobenzene-hexane �NB-C12�, nitropropane-hexadecane �NP-C16�,
nitroethane-3-methyl-pentane �NE-3MP�, triethylamine-water
�TEA-W�, nitrobenzene-isooctane �NB-IO�; benzonitrile-isooctane
�BN-IO�, aniline-cyclohexane �A-CH�, and nitroethane-
cyclohexane �NE-CH�.
bCalculated as indicated in the text.
cThey have been assumed to be the same as those at atmospheric
pressure.
dUnpublished data measured in Ourense laboratories.
eReference �69�.
fReference �44�.
gReference �70�.
hReference �43�.
iReference �71�.
jReference �27�.
kReference �72�.
lReference �41�.
mReference �73�.

nReference �22�.
oReference �74�.
pReference �75�.
qReference �76�.
rReference �26�.
sReference �77�.
tReference �78�.
uReference �79�.
vReference �20�.
wReference �31�.
xReference �34�.
yReference �80�.
zReference �17�.
aaReference �23�.
abReference �32�.
acReference �81�.
adReference �82�.
aeReference �18�.
afReference �83�.
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anomalies, the former being responsible for its existence.
From a purely thermodynamic perspective, the presence of
the �Y�2� singularity for pure fluids is relevant in that it im-
plies the existence of the Yang-Yang and related anomalies,
while for liquid-liquid phase transitions such a term origi-
nates from the dependence of critical coordinates on pres-
sure.

The analysis of available experimental data reveals good
consistency with the theoretical results: in contrast to pure
fluids, liquid-liquid binary systems provide strong evidence
for the �Y�2� singularity. Moreover, the relation between
�d�T� and �d�p� anomalies is driven by the dimensionless
parameter ���T̆c /�p̆�E��; the fact that it is typically lesser than
1 is consistent with the larger �d�p� anomalies experimen-
tally encountered. The same applies to ��T� and ��p� data
along the critical isopleth in the one-phase region of liquid-
liquid systems, where ��Y�
�Y�1−�. No restrictions in both
the sign and magnitude of the slope of the temperature-
pressure-electric field critical surface in a plane of constant
pressure should be expected. Nevertheless, information de-

rived from � studies suggests that ��T̆c /�Ĕ��p is usually
negative.

Further experiments would be worthwhile. Additional
studies in the two-phase region as well as measurements as a
function of pressure should reinforce the actual conclusions.

Experiments aimed at providing information on ��T̆c /�Ĕ��p,
either via direct measurements or, indirectly, from � studies,
are expected to be highly valuable. As explained at the end
of Sec. V, nitrobenzene-hexane appears to be a promising
candidate amenable to exhibit a topologically rich
temperature-pressure-electric field critical surface.
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